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Abstract. This paper is devoted to the development of an Identification 

Framework for unknown Complex Systems. The proposal is based on Recurrent 

Trainable Neural Networks following a Hybrid System approach. The complex 

system is identified by using hybrid input-output data defined by a given set of 

switching hypersurfaces. The effectiveness of the proposed approach is shown 

using a commutable pendulum with chaotic behavior. 

Keywords: Complex systems identification, hybrid systems, recurrent trainable 

neural networks. 

1 Introduction 

It is well known that interpreting and predicting the behavior of complex dynamical 

systems is challenging, mainly because the causes and effects are not obviously related. 

One way to establish the direct and indirect relationships of causes and effects in a 

complex system is via an identification framework. The identification problem consists 

of obtaining a model that allow us to infer how the system will respond to other inputs 

that we have not yet measured by approximating the output trajectory of the system. In 

the complex systems context, there are several approaches with quite different 

viewpoints on system modeling: dynamical systems, discrete event systems, cellular 

automata models, neural network models, finite state machines, cognitive maps, multi-

agent models and Hybrid Systems (HS) (see [3] and the references there in). These 

paradigms differ, rather, by concepts and views on the problems and approaches to 

solve them, than the applications areas [1, 7, 10, 13, 16, 17]. In this contribution, we 

follow the HS approach. 

    The identification theory for continuous state systems is well developed in the 

literature [18]. However, HS add extra complexity due to the interaction of continuous 

and discrete dynamics. The identification of complex systems following a HS approach 

has been devoted to the identification of switched affine and piecewise affine models. 

The main issues and difficulties connected with HS identification are discussed in [22]. 
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Normally the identification is based on statistical techniques that need a reasonable 

amount of data and assume stationarity: they require that the underlying system does 

not change its parameters over time. If the parameters of the system are drifting or 

externally switched from time to time, the statistical algorithms can be applied to short 

segments of the data, thereby monitoring changes in the characteristic quantities. 

However, such methods may suffer from the curse of dimensionality and other 

statistical problems that arise when estimating from few data points. 

    Instead of a statistical technique, in this contribution we use a Neural Network (NN) 

technique that is very effective for identification and control of nonlinear systems when 

partial or null information about systems is available [20]. It is worth to mention, that 

the idea to incorporate NN for identification of complex systems following a HS 

approach has been previously addressed. In one side, some proposals incorporate the 

NN identifier as a global model, losing the nature of HS [2, 15, 19]. In the other side, it 

is assumed that the sequence of locations is known or that it is well established by 

considering the discrete-time dynamics at the higher level of a hierarchical framework 

[12, 14]. These kinds of assumptions could not be valid because the dynamic behavior 

of a HS is strongly influenced by discontinuities in its system trajectories [9, 23]. 

    In this paper an identification methodology based on Recurrent Trainable NN 

(RTNN) to model complex systems, in a HS approach, is presented; following a gray 

box retaining the characteristic behavior of HS and introducing the Hybrid RTNN 

(HRTNN).  

    The outline of the paper is as follows: In Section 2 we describe the hybrid complex 

systems investigated in this contribution and the identification problem is formulated.  

In Section 3 we present the HRTNN description. In order to show the validity of the 

proposed HRTNN several simulations of a commutable ideal pendulum, presenting 

chaos behavior, are developed in Section 4. Section 5 concludes the paper.  

2 Modeling Framework and Problem Formulation 

In this contribution, a complex system is considered as a system composed by simple 

subsystems; where the subsystems are active in a set of locations. Then the modeling 

framework for the complex system identification is based on Hybrid Dynamical 

Systems (HDS) structures. The HDS are characterized by a set of subsystems 

interconnected in a discrete manner. The applicability of this approach can be seen in 

the fact that several types of hybrid systems are used in chemical, bioengineering, 

aerospace and electronics industries, among others to model complex control systems 

[7, 9, 10, 17]. The Nonlinear HDS (NHDS) discussed in this paper are represented by 

its hybrid state equation 

ẋ(t)= ∑ β[ti-1,ti)
(t)fqi

(t,x(t),u(t))r
i=1  a.e. on t ∈ [0, tf], (1)  

and by the hybrid output vector 
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y̅(t)= ∑ β[ti-1,ti)
(t)hqi

(t,x(t),u(t))r
i=1   a.e. on, t ∈ [0, tf] (2)  

with available sample-data outputs y(k). β[ti-1,ti)
(∙), is the characteristic function of the 

interval [ti-1,ti)
 
for i=1,…,r, i.e. 

β[ti-1,ti)
(t) = {

1,    if   t ∈ [ti-1,ti), i=1,…,r

0,                          otherwise
. 

 

    Here qiQ represents a location, Q is a finite set of discrete states (called locations), 

x()X is an admissible state trajectory, X={Xq} with Xq  Rn; u()U is an admissible 

input signal and URm is a set of admissible measurable bounded functions; fq: [0, tf] ×

Xq × U → Rn defines a family of velocity vector fields F={fq};hq: [0, tf] × Xq × U →

Rp

 
are diffeomorphisms which define a family of vector fields H={hq}; and y̅(∙)∈Y is 

an admissible output trajectory, Y={Yq} is a collection of output sets with YRp. The 

interest of considering NHDS with sample-data outputs is twofold: these models can 

represent a wide range of systems of practical interest and sample-data outputs can be 

interpreted as a result of application of a quantified procedure to an original continuous 

model. Note that, in difference to y̅(t) the stepwise value y(k) is a measurable output 

of the system under consideration. We assume that the dynamic transitions between 

two subsystems are characterized by the assembly of switching pairwise disjoint 

hypersurfaces Mq,q'≔{x∈Rn:mq,q'(x)=0}, where mq,q':R
n→R, q,q'∈Q

 
are smooth 

functions with nonzero gradients. The given hypersurfaces Mq,q' represents the 

switching sets at which a switch from location q to location q’ can take place. We say 

that a location switching from q to q’ occurs at a switching time tsw∈[0,tf]. We consider 

NHDS with r∈R switching times: 0<t0<t1<⋯<tr-1<tr=tf. Note that the sequence of 

switching times {ti} is not defined a priory, neither the sequence of locations: {qi}. In 

order to state the problem, that we are interested on, let us introduce the following 

definition. 

 

Definition 1: A hybrid trajectory of NHDS is a 3-tuple X={x(∙),qi,ti} such that for each 

i=1,…,r and every admissible input u()U we have 

 x(0) = x0 ∉ ⋂ Mq,q′q,q′∈Q  and xi(∙)=x(∙)|(ti-1,ti) is an absolutely continuous 

function on (ti-1,ti) continuously prolongable to [𝑡𝑖−1, 𝑡𝑖], i=1,…,r 

 x(ti) ∈ Mq,q′ for i=1,…,r; 

 ẋ(t) = fqi
(t, xi(t), u(t)) for almost all t∈[ti-1,ti] 

 

    Observe that given an admissible signal input u(), the physical attributes of a NHDS 

governed by its state equation (1) are transformed by (2) into responses as system 

outputs. Here, we suppose that the hybrid output retains the state behavior, i.e., the 

transition from one location to another in the space state cause a transition in the output 

response. We assume that the transitions at the output are characterized by the assembly 

of switching pairwise disjoint hypersurfaces 

Nq,q'≔{y∈Rp:nq,q'(y)=0}, (3)  
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where nq,q':R
p→R, q,q'∈Q are smooth functions with nonzero gradients defined 

as: nq,q'(𝑦)= 𝑚q,q' (ℎ𝑞′
−1(𝑥)). We now could formulate the identification problem as: 

Problem 1: Assume that the NHDS (1)-(2) is unknown. The identification problem 

consists of obtaining a model that allow us to infer how the NHDS will respond to other 

inputs that we have not yet measured by approximating the output hybrid trajectory of 

the system NHDS. That is, for an experiment with length tf, we want to determine a 

model with a hybrid output Ŷ={ŷ(∙),{q̂i},{ti}} which approximate the NHDS response, 

visited during the experiment, by using only the observed data {u(t),y(k),t∈[0,tf]}.
 

3 HTRNN Description 

During the last decade considerable research has been devoted towards developing 

RNN models applied for identification and control of complex nonlinear plants [4, 5]. 

Under the premise of Problem 1, we follow the structure of NHDS to approach complex 

systems; the dynamic transitions from one location to another observed in the output 

response are described by the equations of mathematical physics, but the response of 

the subsystems is modeled by neural networks. Then, to describe the global complex 

system’s behavior, we use an arbitrary interconnection between subsystems with 

discrete event, characterized by switching hypersurfaces. It means that the transition 

locations  iq and the sequences of switching times  it  are not previously defined, 

only the hypersurface (3) are considered. It is worth to mention, that to develop a 

computational identification it is necessary to take some measurements in a time 

interval. Then, it is pertinent to consider a discrete RTNN to performs this task. It is 

well known that during the sampling process it is possible to lose a location transition. 

However, if the direction of the trajectory is considered it is possible to detect when a 

hypersurface nq,q' has been triggered. 

The RTNN topology and its associated BP learning rule are described in vector-

matrix form, [4, 5, 6], as: 

 

x̂(k + 1) = Ax̂(k) + Bû(k);   

z(k) = G[x̂(k)];   v(k) = Cz(k);   ŷ(k) = F[v(k)]; 
w(k + 1) = w(k) + ηΔw(k) + αΔw(k − 1); 

e(k) = y(k) − ŷ(k);   F′[ŷ(k)] = [1 − ŷ2(k)]; 
e3(k) = G′[z(k)]e2(k);    e2(k) = CT(k)e1(k); 
G′[z(k)] = [1 − z2(k)];     ΔB(k) = e3(k)ûT(k); 
ΔA(k) = e3(k)x̂T(k);      ΔC(k) = e1(k)zT(k); 

(4)  

where ŷ(k), x̂(k) and û(k) are output, state and input vectors of the RTNN with 

dimension p, N, (m+1); here uT = [u; u0], where u is the real plant input vector with 

dimension m and u0=-1 is a threshold entry; y is the plant output vector with dimension 

p, considered as a RTNN reference; A is NN block-diagonal matrix, defined by A =
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block − diag(Ai); B = [B1; B0] and C = [C1; C0] are N(m+1) and L(N+1) 

augmented weight matrices; B0 and C0 are N1 and L1 threshold weights of the hidden 

and output layers; F[] and G[] are vector valued activation functions of type tanh(); 

F′[∙] and G′[∙] are the derivatives of the activation functions; W is a general weight 

denoting each weight matrix (C, A, B) in the RTNN model, to be update; w 

(C,A,B), is the weight correction of W (C, A, B); , are learning rate parameters; 

e, e1, e2, e3 are error vector with appropriate dimensions, predicted by the adjoint RTNN 

model. It is well known that the stability of the RTNN model is assured by the activation 

functions (-1,1) bounds and by the local stability weight bound conditions, |Ai| < 1. 

3.1 Gray-Box Approach 

Following a gray-box approach we only assume that 𝑟 location transitions in the hybrid 

output can take place. These transitions are characterized by the assembly of the given 

switching hypersurfaces (3). In this case we propose the use of the RTNN defined by 

(4) together with the switching hyper surfaces (3) used like a supervisor layer. This 

supervisor layer defines the switching instants between the RTNNqi
 to RTNNqj

, i.e., 

when condition ηqi,qj
(y(k)) = 0 is fulfilled a transition between the neural networks 

occurs. In Fig. 1 we introduce the HRTNN model. 

 

Fig. 1  HRTNN Identifier of the Complex System: NHDS approach. 

Remark 1: Note that in an arbitrary switching time, we are not updating the initial 

weights neither the initial state of the new located RTNNqi
. Then to avoid any impulse 
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(error) in the updating of the weights and the state of the actual RTNNqj
, we propose to 

add an Auxiliary Neural Network (ANN), showed in Fig. 2. 

    This ANN can be of any suitable topology. For simulation purposes we propose the 

use of a RTNN with the same topology as the RTNNqj
. Observe that the convergence 

of this approach in a specific location is assured by the convergence of the RTNN 

training algorithm [4], [5], [6]. However, this convergence is subject to an enough 

amount of training data, and the absence of the Zeno behavior. Also note that the 

switching times can be computed analytically as it is shown in [11]. However, it is 

important to remark that the switching manifolds rule these switching times, so with 

the knowledge of these hypersurfaces we could know when a transition happens. The 

knowledge of the manifolds at the hybrid output along with an appropriated weight 

actualization strategy at the switching times makes possible to achieve a finite time 

convergence or at least a global convergence as in [12]. 

 
Fig. 2 Auxiliary Neural Network Topology. 

Remark 2: The gray-box strategy is actually a hybrid strategy, which allows us to 

identify the nonlinear system like a hybrid one. To complete the hybrid strategy as a 

black-box approach, we need structures that allow us to identify the switching 

manifolds (see [22] for details). 

4 Simulation Results: Chaotic Behavior of an Ideal 

Commutable Pendulum 

Here, the applicability of our approach is illustrated by a commutable pendulum 

example, taken from [21]. In an ideal form, the general mathematical model of this 

system is given by the following equations: 

Σ = {
Σ1:  ẍ + x = 0          x, ẍϵR,

Σ2:  ẍ + ω2x = 0     x, ẍϵR,
 

where ω is the pendulum frequency and the switching manifolds are defined by: 
M1,2: x < 0, ẋ = 0, 

M2,1: x = 0, ẋ > 0. 

ANN qi,qjRTNN qi
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  y  
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Under some parameter conditions, the commutable pendulum presents a chaotic 

complex behavior, when the pendulum frequency is greater than 1[rad/s], [21]. In 

particular, the system commutes from a stable behavior to an unstable one. However, 

this chaotic nature does not mean that the whole system is unstable (see [8] for more 

details). With the aim to show the effectiveness of the HRTNN in the presence of some 

specific complex behavior, we identify the commutable pendulum with the frequency 

ω = 3.5(1 + x(ti)), i=1,3,… Note that under this condition the system presents two 

limit cycles and it is highly unstabilizable (see the phase plane of Fig. 3). To identify 

the complex behavior of this specific commutable pendulum, we applied the two 

identification strategies, using the oscillatory input: u(t) =
1

10
sin (

2πt

5
). 

Following the Gray box strategy without any actualization at the switching times, 

with the RTNN with topology (2, 4, 2), and learning parameters: =0.6; =0.001, we 

train this network for 200 seconds with a sampling rate of 0.01, obtaining the results 

shown in Fig. 4, where 
1

2
e2(t) is the mean square error. Note that due to the 

discontinuity between the states of both neural networks, there are impulses at the 

switching times as we have expected previously (recall Remark 1). 

 

Fig. 3  Phase Plane: ω = 3.5(1 − x(ti)), i𝑚𝑜𝑑2 = 1. 

    Finally, we follow the Gray Box Strategy with weight and state actualization at the 

switching times. We use the same topology and learning parameters as in the latter case. 

As a result, we obtain the graphics, shown in Fig. 5. Note that there are not impulses at 

the switching times and that the error is reduced. Observe that even when the common 

sense says that we can only identify stable systems; it is possible to identify unstable 

subsystems if the global system remains stable. The advantage of using the Gray Box 

Strategy is that we could identify the chaotic behavior of the system without changing 

the nature of the original system. If we compare these two strategies, we can see the 

following:  
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 The Gray Box Strategy without any actualization at the switching times retains 

the hybrid nature of the system, but it has discontinuities. 

 The Gray Box Strategy with actualization, retains the hybrid nature of the 

system, and eliminates the discontinuities presented in the Gray Box Strategy 

without actualization. 

 

Fig. 4 Gray Box Strategy Identification (1: red line, 1 identification: green line, 

2: blue line, 2 identification: magenta line). 

 

Fig. 5 Gray Box Strategy with ANN Identification (1: red line, 1 identification: 

green line, 2: blue line, 2 identification: magenta line). 
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5 Conclusion 

This paper presents an intelligent approach to identify complex systems following a 

hybrid structure approach. We introduced the topology of the Hybrid Trainable 

Recurrent Neural Network. Two strategies are presented: Gray Box and Gray Box 

strategy with actualization of the neural network state and weights. The Gray Box 

strategy without actualization can identify the system into the locations and preserve 

the complex nature of the system, but it has several errors at the switching times. The 

Gray Box strategy with weight and state actualization overcomes the disadvantages of 

the Gray Box strategy without actualization, making it a suitable option to identify a 

complex system with a hybrid nature even in the presence of chaotic behavior. 

References 

1. P. J. Antsaklis, X. Koutsoukos, J. Zaytoon: On Hybrid Control of Complex 

Systems: A Survey. Eur. J. Automat., Vol. 32, No. 9, pp. 1023–1045 (1998) 

2. D. Back,T.P. Chen: Approximation of hybrid systems by neural networks. In: 

Proceedings of Int. Conf. on Neural Inf. Proc. and Intelligent Inf. Syst., Springer-

Verlag, pp. 326–329 (1997) 

3. A. Bagdasaryan: Systems Theoretic Techniques for Modeling, Control, and 

Decision Support in Complex Dynamic Systems. In: CoRR abs/1008.0775 (2010) 

4. I. S. Baruch, C.R. Mariaca-Gaspar, J. Barrera-Cortes: Recurrent Neural Network 

Identification and Adaptive Neural Control of Hydrocarbon Biodegradation 

Processes. In: Recurrent Neural Networks, Xiaolin Hu and P. Balasubramaniam, 

(Eds.), Croatia: I-Tech/ARS Press, ch. 4, pp.61–88 (2008) 

5. I.S. Baruch, C.R. Mariaca-Gaspar: A Levenberg-Marquardt Learning Algorithm 

Applied for Recurrent Neural Identification and Control of a Wastewater 

Treatment Bioprocess. Int. Journal of Intelligent Systems, vol. 24, pp. 1094–1114 

(2009) 

6. I. S. Baruch, R. Galvan-Guerra, S. M. Hernandez: Distributed Parameter 

Bioprocess Plant Identification and I-Term Control Using Decentralized Fuzzy-

Neural Multi-Models. In Advances in Reinforcement Learning, Abdelhamid 

Mellouk (Ed.), Croatia: InTech, ch. 23, pp. 421–450 ( 2011) 

7. M.S. Branicky, V.S Borkar, S.K. Mitter: A Unified Framework for Hybrid Control: 

Model and Optimal Control Theory. IEEE Trans. on Automatic Control, vol. 43, 

pp. 31–45 (1998) 

8. M.S Branicky: Multiple Lyapunov functions and other analysis tools for switched 

and hybrid systems. IEEE Trans. on Automatic Control, Vol. 43, No. 4, pp. 475–

482 (1998) 

9. M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bulirsh, G. Schmidt: Nonlinear 

Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications. In: 

Lecture Notes in Control and Information Sciences, vol. 279, Springer-Verlag 

(2002) 

105

Recurrent Trainable Neural Networks for Complex Systems Identification: A Hybrid System ...

Research in Computing Science 118 (2016)ISSN 1870-4069



10.  C. Cassandras, D.L. Pepyne, Y. Wardi: Optimal Control of a Class of Hybrid 

Systems. IEEE Transaction on Automatic Control, vol. 46, pp. 398–415 (1998) 

11. R. Galvan-Guerra, J.E. Velázquez-Velázquez, V. Azhmyakov: Explicit Switching 

Times and Location Detection for Linear Hybrid Systems. In: Proc. of the 7th Int. 

Conf. on Electrical Engineering, Computing Science and Automatic Control, 

Tuxtla Gutiérrez, Mexico, pp. 134–139 (2010) 

12. A. García, I. Chairez, A. Poznyak: Hybrid DIfferential Neural Network Identifier 

for Partially Uncertain Hybrid Systems. In: Recent Advances in Intelligent Control 

Systems, Springer-Verlag (2009) 

13. A. Hassibi, S. P. Boyd, J. P. How: Control of Asynchronous Dynamical Systems 

with Rate Constraints on Events. In: Proceedings of the IEEE Conference on 

Decision and Control, 2:1345–1351 (1999) 

14. T. Hayakawa, W. M. Haddad, K. Y. Volyanskyy: Neural network hybrid adaptive 

control for nonlinear uncertain impulsive dynamical systems. Nonlinear Analysis: 

Hybrid Systems, vol. 2, pp. 862–874 (2008) 

15. W. Holderbaum: Application of Neural Network to Hybrid Systems with Binary 

Inputs. IEEE Trans. on Neural Networks, vol. 18(4), pp. 1254–1261 (2005) 

16. S. Kamalasadan: A Novel Multi-Agent Controller for Dynamic Systems based on 

Supervisory Loop Approach. Engineering Letters, EL_14_2_10 (2007) 

17. A.B. Kurzhanskii, P. Varaiya: New Directions in Applications Control Theory. In: 

Lecture Notes Control Inform. Sci., Berlin: Springer, vol. 321, pp. 193–205 (2005) 

18. L. Ljung: System Identification: Theory for the User. Prentice Hall, New Jersey, 

(1987) 

19. N. Messai, B. Riera, J. Zaytoon: Identification of a class of hybrid dynamic systems 

with feed-forward neural networks: About the validity of the global model. 

Nonlinear Analysis: Hybrid Systems, vol. 2, pp. 773–785 (2008) 

20. K.S. Narendra, K. Parthasarathy: Identification and Control of Dynamic Systems 

Using Neural Networks. IEEE Trans. Neural Networks, vol. 1, pp. 4–27 (2008) 

21. V.R. Nosov: Complex Dynamics in an Ideal Commutable Pendulum. In: 

Proceedings of the 5th International Conference on Electrical Engineering, 

Computing Science and Automatic Control, Mexico, Mexico (2008) 

22. S. Paoletti, A. Juloski, G. Ferrari-Trecate, R. Vidal: Identification of Hybrid 

Systems: A Tutorial. European Journal of Control, Vol. 13/2-3, pp. 242–260 

(2007) 

23. A. Van der Schaft, H. Schumacher: An Introduction to Hybrid Dynamical Systems. 

Berlin: Springer (2000) 

 

 

 

 

 

 

 

 

 

106

Juan-Eduardo Velázquez-Velázquez, Rosalba Galván-Guerra, Ieroham Baruch, et al.

Research in Computing Science 118 (2016) ISSN 1870-4069


